If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-13x=5
We move all terms to the left:
x^2-13x-(5)=0
a = 1; b = -13; c = -5;
Δ = b2-4ac
Δ = -132-4·1·(-5)
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3\sqrt{21}}{2*1}=\frac{13-3\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3\sqrt{21}}{2*1}=\frac{13+3\sqrt{21}}{2} $
| (x+3)8=14 | | f-6=f-6 | | 52=1/2b(8) | | |x-2|=-6 | | 6(x+3)=3x-2 | | 17+20x=20x-17 | | 4y-1=5.12 | | 5x+3=6-24 | | x^2/x=190 | | 4x+3x-20+14=155 | | 3x-12/12-(4x/12)=6 | | (3x/10)=(x/3)-1 | | 20x-70=0 | | -3/8(x-24)+1=19 | | x^2+x=190 | | 5-4x=6x-2 | | x^2+4x=190 | | 5(3x-1)=5(2x-4) | | 7x/10=17.5 | | x^2-+1=0 | | -3x-5=-28 | | 5x-2/3=3/5(0)+9 | | 0.4(p+6)-0.9(p+6)=-5 | | 3/5x=-92/3 | | 1.5m+3/4=2 | | 2^(5x-3)=18 | | 2(8+5x)=-(x-5) | | 3/5y+9=-2/3 | | 12-5(3x+2)=74 | | 2(12-6)=6(n+1) | | 6c-2c=35 | | 5(x+3)=4+5x |